Towards Oka-cartan Theory for Algebras of Holomorphic Functions on Coverings of Stein Manifolds I

نویسنده

  • A. BRUDNYI
چکیده

We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the results on holomorphic extension from complex submanifolds, corona type theorems, properties of divisors, holomorphic analogs of the Peter-Weyl approximation theorem, Hartogs type theorems, characterization of uniqueness sets. The model examples of these algebras are: (1) Bohr’s algebra of holomorphic almost periodic functions on tube domains; (2) algebra of all fibrewise bounded holomorphic functions (e.g., arising in the corona problem for H∞). Our approach is based on an extension of the classical Oka-Cartan theory to coherenttype sheaves on the maximal ideal spaces of these algebras – topological spaces having some features of complex manifolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Oka-cartan Theory for Algebras of Fibrewise Bounded Holomorphic Functions on Coverings of Stein Manifolds I

We develop complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds. This, in particular, includes the topics of holomorphic extension from complex submanifolds, corona type theorems, properties of divisors, holomorphic analogs of the Peter-Weyl approximation theorem, Hartogs type theorems, characterization of uniqueness sets. Our model examples c...

متن کامل

Towards Oka-cartan Theory for Algebras of Holomorphic Functions on Coverings of Stein Manifolds Ii

We establish basic results of complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds (such as algebras of Bohr’s holomorphic almost periodic functions on tube domains or algebras of all fibrewise bounded holomorphic functions arising, e.g., in the corona problem for H). In particular, in this context we obtain results on holomorphic extension fr...

متن کامل

Towards Oka-cartan Theory for Algebras of Fibrewise Bounded Holomorphic Functions on Coverings of Stein Manifolds Ii

We establish basic results of complex function theory within certain algebras of holomorphic functions on coverings of Stein manifolds (such as algebras of Bohr’s holomorphic almost periodic functions on tube domains or algebras of all fibrewise bounded holomorphic functions arising, e.g., in the corona problem for H∞). In particular, in this context we obtain results on holomorphic extension f...

متن کامل

Integral Representations of Holomorphic Functions on Coverings of Pseudoconvex Domains in Stein Manifolds

The classical integral representation formulas for holomorphic functions defined on pseudoconvex domains in Stein manifolds play an important role in the constructive theory of functions of several complex variables. In this paper we construct similar formulas for certain classes of holomorphic functions defined on coverings of such domains.

متن کامل

Holomorphic Functions of Slow Growth on Coverings of Pseudoconvex Domains in Stein Manifolds

We apply the methods developed in [Br1] to study holomorphic functions of slow growth on coverings of pseudoconvex domains in Stein manifolds. In particular, we extend and strengthen certain results of Gromov, Henkin and Shubin [GHS] on holomorphic L2 functions on coverings of pseudoconvex manifolds in the case of coverings of Stein manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013